文章编号:2095-1922(2019)05-0929-08

基于耗散粒子动力学的 Nafion 膜内质子 扩散行为

孙 红1,宛 辰2,李 强1,李 洁1

(1. 沈阳建筑大学机械工程学院, 辽宁 沈阳 110168; 2. 沈阳建筑大学交通工程学院, 辽宁 沈阳 110168)

摘 要目的研究质子在 Nafion117 膜内的扩散行为及其最优水合形式. 方法采用耗 散粒子动力学(DPD)方法,利用 Materials Studio 软件构建质子在 Nafion117 膜内传 递模型,通过介观模拟获取径向分布函数和扩散系数. 结果 当 Nafion117 膜含水量达 到一定程度时,水通道相互连通,构成水合质子的传递通道;增加 Nafion117 膜的水 含量和提高温度,有利于水合质子的扩散. 结论 质子在 Nafion117 膜内传递最优水合 形式为 H₃O⁺(H₂O)₂,研究成果为全钒液流电池性能的提升提供了重要依据.

关键词 耗散粒子动力学;全钒液流电池;Nafion117;扩散

中图分类号 TM911 文献标志码 A

Study of Proton Diffusion Behavior in Nafion Membrane Based on Dissipative Particle Dynamics

SUN Hong¹, WAN Chen², LI Qiang¹, LI Jie¹

(1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, China, 110168; 2. School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, China, 110168)

Abstract: The purpose of this paper is to study the diffusion behavior of protons in Nafion 117 membrane and its optimal hydrated form. Based on the dissipative particle dynamics (DPD), the mesoscopic model of proton transfer in Nafion 117 membrane is built by Materials Studio software. The radial distribution function and diffusion coefficient are obtained by the mesoscopic simulation method. The results show that the water channels are interconnected to form a transfer channel of hydrated proton if the water content of Nafion 117 membrane reaches a certain degree. Increasing the water content of Nafion 117 membrane and increasing the temperature are conducive to the diffusion behavior of hydrated protons. The optimal transfer form of the hydrated form is $H_3O^+(H_2O)_2$ in Nafion 117 membrane. The results provide an important basis for improving the performance of all vanadium flow batteries.

Key words: dissipative particle dynamics; vanadium redox flow battery; Nafion 117; diffusion

收稿日期:2018-05-16

基金项目:国家自然科学基金项目(51776131,51476107);辽宁省'兴辽英才计划'(XLYC1802045) 作者简介:孙红(1968—),男,教授,博士,主要从事新能源转化和应用方面研究.

全钒液流电池是一种新型绿色电化学储 能装置,通过电解液中钒离子的价态变化,实 现电能与化学能的转化,实现电能的存储与 释放. 全钒液流电池具有可调节容量、深度充 放电能力强、能量效率高、可靠性高、环境友 好、使用寿命长、成本低廉等特点[1-3]. 质子 交换膜是全钒液流电池的核心材料之一.起 到隔绝正、负极活性物质互相混合和导通离 子在电池内形成回路的作用. 理想的全钒液 流电池质子交换膜应具有较高的质子传导 率,较好的离子选择透过性,良好的物理和化 学稳定性及一定的机械强度.同时,为了广泛 应用,还应保证较低的成本^[4].目前全钒液 流电池质子交换膜应用最为广泛的是美国杜 邦公司生产的 Nation 系列全氟磺酸阳离子 交换膜.

从分子结构上看, Nafion 膜由具有疏水 性的碳氟键构成的主碳链和含有亲水性的磺 酸基团的端链构成.从微观结构的角度.目前 提出的几种比较具有代表性的传质模型有 Schmidt - Rohr 等提出的平行柱状纳米水通 道模型^[5], William 等^[6-7]提出的反向离子 簇胶束网络模型,L. Rubatat^[8]提出的棒状模 型, A. Eisenberg 等^[9]提出的碳氢离聚物模 型.其中笔者较为认同的是平行柱状纳米水 通道模型. 根据 Schmidt - Rohr 等人提出的 平行柱状纳米水通道模型,在膜中聚四氟乙 烯骨架作为支撑,聚集的含有磺酸基的侧链 围成了长柱状的反胶束.质子在形成于胶束 内部的柱状纳米水通道中传递. 当 Nafion 膜 内水含量为饱和状态时,膜内纳米水通道被 水充满,形成连续的传输网络,此时膜的质子 电导率较高:当膜内迅速失去水分时,剩余水 分子在磺酸基团上分散的吸附,间隔较大,不 能形成有效的质子传输通道,此时膜的质子 电导率较低^[5].

目前对 Nafion 膜有关的模拟中,分子动 力学的模拟成果较多. 在现有微观模拟中,可 模拟的Nafion聚合度小于 10. 而 Nafion 膜的 实际聚合度在100以上,其高聚物的特性不 能被完全反映出来^[10].介观模拟方法作为微 观与宏观的纽带在较大的时间步长和空间尺 度下将快速的分子动力学和宏观的热力学弛 豫连接起来. 通过介观模拟方法, 无需对体系 进行预先假设,即可对实验中无法观测到的 动力学行为进行研究. 耗散粒子动力学 (DPD)方法是介观模拟的一种重要方法,属 于粗粒化理论的一种,可以针对大分子体系 进行有效的模拟[11-14],在嵌段共聚物的自组 装、胶束的结构与形态、聚合物共混、高分子 链的聚合行为及薄膜等方面模拟得到了广泛 的应用^[15-17]. 在现有的对 Nafion 膜水中传 质的研究中,微观角度的研究成果较多.V. Arun 等^[18]研究发现温度对水分子和水合氢 离子在膜内的传递特性有重要影响:陈磊 等[19]研究发现随着温度和水含量的增加,水 分子和水合氢离子的扩散系数增大:吴铁军 等^[20] 研究发现 H₅O⁺₂ (H₂O)_n 是质子在 水中传递的主要结构:孙红等^[21]认为 H₅O⁺₇(H₂O)₂是水合质子的主要结构,且电 荷的迁移是通过质子 - 水簇结构中氢氧键的 形成和断裂的过程中实现的.

基于上述分析,笔者采用 Nafion117 作 为质子交换膜,运用耗散粒子动力学的模拟 方法,模拟不同水含量和温度下质子在膜中 的扩散行为和动力学变化特征,探究了水合 质子在膜中的扩散的最有效形式,为全钒液 流电池性能的改进提供参考.

1 模拟方法

DPD 是介观模拟的重要方法,主要是将 一个或几个颗粒粗粒化成珠子,以珠子作为 模拟的基本粒子.将 Nafion117 高聚物、质子 和水分子进行粗粒化,来模拟水合质子在 Nafion117 中的传递特性.

1.1 DPD 方法数学模型

在 DPD 模拟方法中,珠子的运动规律符 合牛顿运动方程^[19]:

$$\frac{\mathrm{d}r_i}{\mathrm{d}t} = v_i, \tag{1}$$

$$m\frac{\mathrm{d}v_i}{\mathrm{d}t} = F_i.\tag{2}$$

式中: r_i 、 v_i 、 m_i 和 F_i 分别为珠子 i的位置、速度、质量和所承受的总作用力. 每个珠子受保守力 F_{ij}^{c} 、耗散力 F_{ij}^{D} 、随机力 F_{ij}^{R} 、键作用力 F_{ij}^{s} 和静电作用力 F_{ij}^{c} 五种作用力的作用.

$$F_{i} = \sum_{i \neq j} \left(F_{ij}^{\rm C} + F_{ij}^{\rm D} + F_{ij}^{\rm R} + F_{ij}^{\rm S} + F_{ij}^{\rm E} \right) . \quad (3)$$

珠子的位置和速度决定了珠子受到的保 守力 F_{ij}^{c} 、耗散力 F_{ij}^{b} 、随机力 F_{ij}^{R} 的大小. 截断 半径 r_{c} 决定了每个珠子与其他珠子之间是 否有相互作用. 模拟中,取 r_{c} = 1,力的大小可 由方程(4)~(6)求得

$$F_{ij}^{\rm C} = \begin{cases} a_{ij} (1 - r_{ij}) r_{ij}^{\wedge}, & r_{ij} < 1, \\ 0, & r_{ij} \ge 1; \end{cases}$$
(4)

$$F_{ij}^{\rm D} = -\gamma \omega^{\rm D}(r_{ij}) \left(\bigwedge_{r_{ij}}^{\wedge} v_{ij} \right) \bigwedge_{r_{ij}}^{\wedge}; \qquad (5)$$

$$F_{ij}^{R} = \sigma \omega^{R}(r_{ij}) \theta_{ij} r_{ij}^{n}.$$
(6)

式中: a_{ij} 为珠子 i 和 j 之间的排斥作用参数; $r_{ij} = r_i - r_j, r_{ij} = |r_{ij}|_{r_{ij}}^{\wedge} = r_{ij}/|r_{ij}|$; γ 为耗散力 参数; $\omega^{D}(r_{ij})$ 和 $\omega^{R}(r_{ij})$ 为权重函数,二者关 系满足 $\omega^{D}(r_{ij}) = [\omega^{R}(r_{ij})]^2 = (1 - r/R_c)^2$; σ 为噪音振幅参数, σ 满足 $\sigma^2 = 2\gamma k_B T; \theta_{ij}$ 为 平均值为0的随机变量; k_B 为玻尔兹曼常数,且 $k_B = 1.380$ 648 8 ×10⁻²³ J·K⁻¹; T 为温度, $k_B T$ 为约化单位,取 $k_B T = 1, \gamma = 4.5, \sigma = 3.$ 在同 一个分子中两个相邻的珠子之间有弹簧力存 在,可表示为

 $F_{ij}^{s} = \sum C_{s} r_{ij}.$ (7)

式中: C_s 为珠子i与j之间的弹簧常数; C_s 值取 4.

1.2 粗粒化及相互作用参数

图 1 所示为 Nafion 的分子结构式,其中 Nafion 高分子单链取 *x* = 7, *y* = 1, *z* = 1, *n* = 100,其单体示意图见图 2.将 Nafion 高聚物 划分成三个片段,每个片段用一个珠子代替. - CF₂CF₂CF₂CF₂ - 片段用 A 珠子来表 示,—OCF₂C(CF₃)FO—片段用 B 珠子来表 示,—CF₂CF₂SO₃—片段用 C 珠子来表示,各 珠子结构见图 3~图 5.

—
$$(CF_2 - CF_2)_x$$
— $(CF - CF_2)_y]_a$ —
[OCF₂--CF]_z-O--(CF₂)₂—SO₃-
CF₃
图 1 Nafion117 膜分子结构

Fig. 1 Molecular structure of Nafion117 membrane

图 2 Nafion117 单体结构

Nafion 高分子聚合物粗粒化后的结构如 图 6 所示,主链由珠子 A 构成,支链上与主 链相连的珠子为珠子 B,支链末端的珠子为 珠子 C.

本模拟中,将 H₃O⁺、H₃O⁺(H₂O)、 H₃O⁺(H₂O)₂和H₃O⁺(H₂O)₃四种水合氢 离子团簇分别用珠子 W₁、W₂、W₃、W₄表示, 其结构如图7所示^[22].

(b)H₃O⁺(H₂O)结构 (c)H₃O⁺(H₂O)₂结构

图 7 四种水合氢离子结构

Fig. 7 Structures of four hydronium ions

DPD 模拟所有过程在 Materials Studio 软件中进行,采用的盒子边长为 28.4nm. 然 后将水合氢离子珠子和 Nafion 珠子放入盒 子中.得出珠子之间的保守力之前,首先算出 两珠子间的排斥参数 *a_{ii}*:

$$a_{ii} = a_{ii} + 3.27\chi_{ii}.$$
 (8)

式中: χ_{ij} 为 Flory – Huggins 参数. 笔者使用 Materials Studio 软件,选用软件中的 Blends 模块在 298 K 温度下,选取 COMPASSII 力 场计算得到溶解度参数 ΔE_{mix} ,计算得到 χ_{ii} :

$$\chi_{ij} = V_{\text{bead}} \left(\frac{\Delta E_{\text{mix}}}{k_{\text{B}}T}\right). \tag{9}$$

其中, V_{bead} 为珠子间的平均体积. W_1 、 W_2 、 W_3 、 W_4 珠子的相关参数如表 1 ~ 表 4 所示.

表1 W₁珠子相关参数

Table 1 Related parameters of bead W₁

珠子对	χ_{ij}	a _{ij}
A – B	0.448	105.46
A – C	0.538	105.76
$A - W_1$	3.104	114.15
B – C	0.041	104.13
$B - W_1$	1.502	108.91
$C - W_1$	-2.088	97.17

表2 W₂ 珠子相关参数

 Table 2
 Related parameters of bead W₂

珠子对	χ_{ij}	a_{ij}
A – B	0.874	106.86
A – C	0.054	104.18
$A - W_2$	7.660	129.05
B – C	1.110	107.63
$B - W_2$	4.498	118.71
$C - W_2$	-8.030	77.74

表3 W, 珠子相关参数

Table 3	Related parameters of bead W_3			
珠子对	χ_{ij}	a_{ij}		
A – B	0.695	106.27		
A – C	0.307	105.00		
$A - W_3$	8.446	131.62		
B – C	0.940	107.07		
$B - W_2$	5 165	120.89		

-8.616

75.83

 $C - W_3$

 Table 4
 Related parameters of bead W₄

珠子对	χ_{ij}	a_{ij}
A – B	0.84	106.75
A – C	1.70	109.56
$A - W_4$	7.38	128.13
B – C	3.62	115.84
$B - W_4$	4.62	119.11
$C - W_4$	- 15.37	53.74

W₃ 珠子在 278 K、288 K、308 K、318 K 温度下得到的相关参数如表 5~表 8 所示.

表5 T=278 K,W,珠子相关参数

Table 5 Related parameters of bead W_3 when T = 278 K

珠子对	χ_{ij}	a_{ij}
A – B	0.396	105.29
A – C	-0.204	103.33
$A - W_3$	8.010	130.16
B – C	0.300	104.98
$B - W_3$	5.040	120.48
C – W ₃	-8.600	75.88

(a)H,0⁺结构

表6 T=288 K,W3 珠子相关参数

Table 6 Related parameters of bead W_3 when T = 288 K

珠子对	χ_{ij}	a_{ij}
A – B	0.514	105.68
A – C	0.210	104.69
$A - W_3$	8.280	131.08
B – C	0.756	106.47
$B - W_3$	5.170	120.91
C – W ₃	-8.200	77.19

表7 T	= 308	Κ.	W ₂	珠子柞	目关参数
------	-------	----	----------------	-----	------

Table 7	Related	parameters	of	bead	W	when	Т	=308	Κ
---------	---------	------------	----	------	---	------	---	------	---

珠子对	χ_{ij}	a _{ij}
A – B	0.276	104.90
A – C	-0.264	103.14
$A - W_3$	8.260	131.01
B – C	0.504	105.65
$B - W_3$	4.900	120.02
C – W ₃	-7.960	77.97

表8 T=318 K,W3 珠子相关参数

Table 8 Related parameters of bead W_3 when T = 318 K

珠子对	χ_{ij}	a _{ij}
A – B	0.378	105.24
A – C	0.156	104.07
$A - W_3$	8.076	130.41
B – C	0.515	105.68
$B - W_3$	5.052	120.52
$C - W_3$	-8.388	76.57

1.3 扩散系数和径向分布函数

扩散系数是衡量各个粒子在体系中扩散 状态的一项重要指标.一个体系中,粒子不会 处于一个固定的位置,而是在不断的移动中. 当体系处于平衡态时粒子在 t 时刻所处的位置 与初始位置之间向量差的平方,即为均方位移:

$$L_{\rm MSD} = \{ r(t) - r(0) \}^2.$$
 (10)

当体系是液态时, L_{MSD}与时间呈线性关系, 且其斜率 k 与粒子的扩散系数存在关系式:

$$D = \frac{1}{6}k = \frac{1}{6}\lim_{t \to \infty} \frac{d}{dt} \sum_{i=1}^{Na} \left[r_i(t) - r_i(0) \right]^2 . (11)$$

式中:r_i为粒子的位置向量;Na 为珠子数;t 为模拟时间.

径向分布函数用来描述系统中其他粒子 相对给定粒子在空间分布的几率,即可用来 研究物质的有序性,又可用来描述电子的相 关性.径向分布函数的表达式:

$$g(r) = \frac{1}{\rho 4\pi r^2} \frac{\sum_{r=1}^T \sum_{j=1}^N \Delta N(r \rightarrow r + \delta r)}{N \times T} . (12)$$

式中:T为模拟时间;N为珠子数;r为珠子间 距离; δr 为时间差; ΔN 为r到 $r + \delta r$ 区间范 围中的珠子数目.

2 模拟结果与讨论

2.1 水通道三维拓扑结构图

图 8 为 W₃ 珠子在 λ = 8(λ 表示水或水 合氢离子分子与磺酸基数的比值)时形成的 水通道三维拓扑结构图. 当 λ = 8 时,水团簇 相互贯穿形成通道,形状不规则;当 W₃ 含量 继续增加,相互连接贯穿的通道尺寸增加,通 道形状的不规则程度也增加,大体呈海绵状. 水通道是质子在膜中的传递通道.

图 8 $\lambda = 8$ Nation 膜三维拓扑结构图

- **Fig. 8** Three-dimensional topological structure of Nafion membrane with $\lambda = 8$
- 2.2 不同膜水化程度下,各珠子的径向分布 函数

图 9 所示为 T = 298 K 时, H_3O^+ 、 H₃O⁺(H₂O)、H₃O⁺(H₂O)₂、H₃O⁺(H₂O)₃ 四种水合氢离子粗粒化后的 W₁、W₂、W₃、 W₄ 珠子分别与磺酸基珠子 C 在 $\lambda = 2$ 、 $\lambda = 4$ 、 $\lambda = 8$ 、 $\lambda = 12$ 和 $\lambda = 16$ 的膜水化程度下的 径向分布函数(RDF).从图中可以看出,RDF 曲线在 r = 0.6 nm 时取得第一个峰值;珠子 中水分子数增加,r 值略有降低;随着膜含水 量的增加,RDF 峰值减小.这说明膜含水量 较低时,水合氢离子与亲水的磺酸基团之间 具有较强的相互作用. 而膜含水量较高时,水 合氢离子和磺酸基团的吸引力降低,RDF 峰 值减小.

图9 W_1 、 W_2 、 W_3 、 W_4 珠子在不同水化程度下的径向分布函数

Fig. 9 Radial distribution function of W_1 , W_2 , W_3 , and W_4 beads under different degrees of hydration

图 10 所示为λ = 12 时,四种珠子分别与 磺酸基珠子之间的径向分布函数值. 从图中 可以看出:W₁ 珠子的峰值最小,W₂、W₃、W₄ 珠子的峰值依次升高. 说明随着水合氢离子 中所含水分子个数越多,水合氢离子体积越 大,RDF 值越大. 同时,水分子数增多,水合 质子极性减弱,水合质子与磺酸基结合力 越弱.

2.3 扩散系数

图 11 所示为 W₁、W₂、W₃、W₄ 珠子在不 同膜水化程度下的扩散系数曲线. 从图中可 以看出:四种珠子相比较, W₁、W₂、W₃的扩 散系数依次增大, 但W₄的扩散系数小于W₃

- **图 10** *λ* = 12 时, W₁、W₂、W₃、W₄ 珠子与 C 珠子 间的径向分布函数对比图
- Fig. 10 Radial distribution function between W_1 , W_2 , W_3 , W_4 beads and C beads with $\lambda = 12$

的扩散系数.质子在 Nafion 膜中的传递阻力 主要包括电荷引力和水合质子体积.由于磺 酸基带了一个负电荷,而水合质子带一个正 电荷,在水合质子和磺酸基之间会产生电荷 引力.但水合质子体积和质量较小时,水合质 子挣脱电荷引力的能力较低.随着水合质子 中水分子数量的增加,其挣脱电荷引力的能 力增强,扩散系数增大.但当水合质子中水分 子数量增加到一定值,水合质子的体积阻力 增加,当体积阻力作用超过电荷引力引起的 阻力时,扩散系数就会降低.图中显示当水合 氢离子中水分子数为3时,W₃珠子扩散系 数最大.由此可以认为H₃O⁺(H₂O)₂是质子 在膜中传递的最有效形式.

- 图 11 不同水合氢离子含量下的 W₁、W₂、W₃、
 W₄ 珠子的扩散系数
- Fig. 11 Diffusion coefficients of W_1 , W_2 , W_3 , and W_4 beads under different levels of hydronium
- 2.4 温度对 W₃ 珠子径向分布函数和扩散
 系数的影响

图 12 所示为 λ = 8 时, 温度对 W₃ 珠子 在膜中扩散系数的影响. 图中显示:随着温度 的升高, 珠子的扩散系数上升. 这是由于温度 升高, 水合质子珠子的运动更为剧烈, 不仅提 高了水合质子的运动速度, 还提高了水合质 子挣脱磺酸基引力的能力, 相对减弱了电荷 引力的阻碍作用, 有利于水合质子的扩散.

3 结 论

(1)当 Nafion117 膜含水量达到 $\lambda = 8$ 以 上时,由水分构成的水通道相互连接贯穿,形 成水合质子传递的通道;在 H_3O^* 、 $H_3O^*(H_2O)$ 、 $H_3O^*(H_2O)_2$ 、 $H_3O^*(H_2O)_3$ 四种水合氢离子的扩散中, $H_3O^*(H_2O)_3$ 扩 散系数最大,是质子在膜内传递的最有效形 式.

(2) 增加 Nafion117 膜中的含水量,由水 分构成的水合质子传递通道数量增加,使得 水合质子的扩散系数增大.

(3)随温度的升高,水合质子运动速度 增大,水合质子挣脱电荷引力阻碍的能力提 高,其扩散系数也提高.

参考文献

- LI X, ZHANG H, MAI Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications [J]. Energy & environmental science, 2011, 4(4):1147 - 1160
- [2] SKYLLAS-KAZACOS M, KAZACOS G, POON G, et al. Recent advances with UNSW vanadium-based redox flow batteries [J]. International journal of energy research, 2010, 34 (2):182-189.
- [3] LI X, ZHANG H, MAI Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications [J]. Energy & environmental science, 2011, 4(4):1147 - 1160.
- [4] KROLL R. Graphite oxide/nafion composite membranes for polymer electrolyte fuel cells
 [J]. Rsc advances, 2012, 2(23):8777 - 8782.
- [5] 刘云龙.用于高温质子交换膜燃料电池的

Nafion 复合膜研究[D]. 天津: 天津大学, 2014.

(LIU Yunlong. A study on nafion composite membranes for high temperature proton exchange membrane fuel cell [D]. Tianjin: Tianjin University,2014.)

- [6] WILLIAMY H, GIERKE T D. Ion transport and clustering in nafion perfluorinated membranes [J]. Journal of membrane science, 1983,13(3):307-326.
- [7] 吴金锋,侯明,衣宝廉,等.质子交换膜燃料电 池及系统建模的研究与进展[J].电源技术, 2004,28(1):56-63.

(WU Jinfeng, HOU Ming, YI Baolian, et al. State-of-art and prospect of models performance for proton exchange membrane fuel cell and stacks [J]. Chinese journal of power sources, 2004, 28(1):56-63.

- [8] RUBATAT L, ROLLET A L, GEBEL G, et al. Evidence of elongated polymeric aggregates in Nafion [J]. Macromolecules. 2002, 35 (10): 4050 - 4055.
- [9] EISENBER G A, HIRD B, MOORE R B. A new multiplet-cluster model for the morphology of random ionomers [J]. Macromolecules, 1990,23(18):4098-4107.
- [10] 沙华,孙玲,刘东雷. DPD 方法在软物质模拟
 领域的研究及应用进展[J]. 材料导报,2014, 28(5):117-121.
 (SHA Hua,SUN Ling,LIU Donglei. Research

and application progress of DPD method in the field of soft matter simulation [J]. Materials review,2014,28(5):117 – 121.)

- [11] GUO H, QIU X, ZHOU J. Self-assembled coreshell and janus microphase separated structures of polymer blends in aqueous solution [J]. Journal of chemical physics, 2013, 139 (8): 423.
- [12] 孙德林,周健. 耗散粒子动力学模拟 Nafion 膜和 PVA/Nafion 共混膜的介观结构[J].物理化学学报,2012,28(4):909-916.
 (SUN Delin, ZHOU Jian. Dissipative particle dynamics simulations on mesoscopic structures of Nafion and PVA/nafion blend membranes [J]. Acta physico-chimica sinica, 2012, 28 (4):909-916.)
- [13] 范中相,黄建花. 稀溶液中 Rod-Coil-Rod 三 嵌段共聚物组装结构的耗散粒子动力学模拟
 [J].物理化学学报,2014(3):408-412.
 (FAN Zhongxiang, HUANG Jianhua. Dissipative particle dynamics simulation on aggregation of rod-coil-rod triblock copolymer in dilute solution[J]. Acta physico-chimica sinica,2014 (3):408-412.)
- [14] LI Z, TANG Y H, LEI H, et al. Energy-conser-

ving dissipative particle dynamics with temperature-dependent properties [J]. Journal of computational physics, 2014, 265(5):113 – 127.

- [15] OUYANG Y, HAO L, MA Y, et al. Dissipative particle dynamics thermostat: a novel thermostat for molecular dynamics simulation of liquid crystals with Gay-Berne potential [J]. Science China chemistry, 2015, 58(4):694 - 707.
- [16] WEN X, LAN J, CAI Z, et al. Dissipative particle dynamics simulation on drug loading/ release in polyester-PEG dendrimer[J]. Journal of nanoparticle research, 2014, 16(5):1-12.
- [17] 潘恒,张洋,周茗萱,等. 耗散粒子动力学在高分子领域中的应用[J]. 胶体与聚合物,2016(1):42-45.
 (PAN Heng, ZHANG Yang, ZHOU Mingxuan, et al. Application of dissipative particle dynamics in polymer field[J]. Chinese journal of colloid and polymer,2016(1):42-45.)
- [18] ARUN V, RAM D, DUPUIS M. Atomistic simulations of hydrated nation and temperature effects on hydronium ion mobility [J]. Journal of physical chemistry B, 2007, 111 (25): 7234 – 7244.
- [19] 陈磊,林鸿,陶文铨. 质子交换膜内水和质子 扩散的分子动力学模拟[J]. 工程热物理学 报,2010,31(11):1917 - 1920.
 (CHEN Lei,LIN Hong,TAO Wenquan. Diffusion processes of water and proton in proton exchange membrane using molecular dynamics simulation[J]. Journal of engineering thermophysics,2010,31(11):1917 - 1920,)
- [20] 吴铁军,吴玉厚,孙红,等. 质子在水中传递机 制的分子模拟[J]. 机电产品开发与创新, 2010,23(2):19-21.
 (WU Tiejun, WU Yuhou, SUN Hong, et al. Study on the mechanism of proton transport in water by molecular simulation [J]. Development & innovation of machinery & electrical products,2010,23(2):19-21.)
- [21] 孙红,栾丽华,吴铁军,等. 质子交换膜中的传质分析[J]. 工程热物理学报,2012,33(2):255-258.
 (SUN Hong,LUAN Lihua,WU Tiejun, et al. Mass transfer in proton exchange membrane [J]. Journal of engineering thermophysics, 2012,33(2):255-258.)
- [22] ZAIKA Y V, KOBZEV G I, DAVYDOV K S, et al. Peculiarities of the electronic spectra of the hydronium ion and 1 ($H_3O + nH_2O$) (n = 1 - 3,5,6) small clusters [J]. Russian journal of physical chemistry B, 2015, 9(2): 201 – 210.

(责任编辑:刘春光 英文审校:范丽婷)